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An Approach to Fine Coregistration Between
Very High Resolution Multispectral Images
Based on Registration Noise Distribution

Youkyung Han, Member, IEEE, Francesca Bovolo, Senior Member, IEEE, and Lorenzo Bruzzone, Fellow, IEEE

Abstract—Even after applying effective coregistration methods,
multitemporal images are likely to show a residual misalignment,
which is referred to as registration noise (RN). This is because
coregistration methods from the literature cannot fully handle the
local dissimilarities induced by differences in the acquisition con-
ditions (e.g., the stability of the acquisition platform, the off-nadir
angle of the sensor, the structure of the considered scene, etc.). This
paper addresses the problem of reducing such a residual misalign-
ment by proposing a fine automatic coregistration approach for
very high resolution (VHR) multispectral images. The proposed
method takes advantage of the properties of the residual misalign-
ment itself. To this end, RN is first extracted in the change vector
analysis (CVA) polar domain according to the behaviors of the
specific multitemporal images considered. Then, a local analysis of
RN pixels (i.e., those showing residual misalignment) is conducted
for automatically extracting control points (CPs) and matching
them according to their estimated displacement. Matched CPs are
used for generating a deformation map by interpolation. Finally,
one VHR image is warped to the coordinates of the other through
a deformation map. Experiments carried out on simulated and
real multitemporal VHR images confirm the effectiveness of the
proposed approach.

Index Terms—Change vector analysis (CVA), image coregistra-
tion, registration noise (RN), remote sensing, very high resolution
(VHR) multispectral images.

I. INTRODUCTION

W ITH the launch of Earth observation satellites equipped
with very high resolution (VHR) sensors (e.g.,

IKONOS, QuickBird, GeoEye-1, and WorldView-2), the avail-
ability of images with a ground field of view of less than 1 m
has increased. As satellites can periodically acquire images of
the Earth’s surface, multitemporal images can play an important
role in a wide range of applications. However, to utilize the
multitemporal images, they should be precisely aligned to each
other. Image coregistration, which is the process of spatially
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overlaying two or more images of the same scene [1], is
thus a fundamental preprocessing requirement. Highly precise
coregistration allows for better information extraction from
multitemporal images.

Most of the coregistration procedures between multitemporal
images consist of four steps. First, control points (CPs), which
are the objects that correspond to distinctive and representative
points of the investigated scene, are extracted from each image
independently. Second, each CP from one image is matched
with the corresponding CP of the other image using a simi-
larity measure. Third, matched CPs are employed to estimate
a transformation model. Fourth, one image (slave image) is
warped to the other image (master image). In order to carry out
the coregistration task, the most critical part is to extract CPs
and match them. In the literature, two kinds of approaches can
be found: area-based methods and feature-based methods [1].
Area-based methods use windows of predefined size or even
the entire images for the correspondence extraction. They work
well with images that have few salient objects because they do
not perform extraction of CPs. The limitation of these methods
is that they cannot work when the multitemporal images show
significant distortions or large geometric differences. They are
also sensitive to the intensity changes in images. Feature-
based methods extract CPs based on the representative points,
e.g., line intersections, starting and ending points of lines, or
centroid pixels of close-boundary regions. The extracted CPs
between images are matched by various feature descriptors or
similarity measures along with spatial relationships among the
CPs. The feature-based methods can be applied, although the
images have significant distortions and geometric differences.
However, they are less effective when the images have few
salient features and tend to extract a large number of false-
matched pairs of CPs (i.e., outliers) if there are many similar
features within a given scene.

Both the area-based and feature-based methods have been
variously and effectively employed in CP matching of low
and medium spatial resolution images [2]–[5]. However, they
resulted to be less effective when dealing with new-generation
satellite sensors having a very high geometrical resolution,
which may observe the same scene from different paths and
angles, thus resulting in images with nonrigid geometric differ-
ences. Accordingly, recorded scenes may show more complex
geometric relief displacements and large distortions with re-
spect to the low- and medium-resolution acquisitions [6]. More-
over, complex height variations in the terrain cause severe relief
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displacements and local distortions in the image [7]. Thus, the
feature-based methods (which can correct local distortions) are
more effective when dealing with VHR multitemporal images
rather than the area-based methods [8]–[12]. In order to account
for VHR image properties, methods that extract CPs using
scale-invariant feature transform (SIFT) have been developed,
which represent the feature-based matching method [13]. The
SIFT technique has been adapted and improved to make it more
appropriate for VHR images in order to increase the registration
accuracy [14]–[17]. It is also applied to both the coregistration
of large images [8], [18] and of multisensor images such as
SAR and optical images [19]–[21]. However, these feature-
based approaches have a limitation because CPs are matched
based on the similarity between the properties of the local
regions. It means that only regions showing similar geometric
properties can be considered candidates for the CP matching.
However, when the CPs are extracted from a region having
local distortion, it may become difficult to find their exact
corresponding location due to the distortion itself. Therefore,
the local regions that are distorted or show dissimilar proper-
ties between images cannot be completely corrected by these
approaches. Some studies introduced nonrigid transformation
models to mitigate the local distortions, under the assumption
that CPs are evenly distributed over the images, [22]–[25].
However, having CPs evenly distributed over the images is dif-
ficult; thus, these models cannot completely solve the problem.

Despite the aforementioned methods may achieve high over-
all coregistration accuracy, there is still a margin to improve it.
The margin relies in the possible significant residual misregis-
tration occurring at local level even after coregistration, which
is also referred to as registration noise (RN) [26], [27]. The RN
occurs due to several factors causing distortions in VHR images
(e.g., the stability of the acquisition platform, the off-nadir
angle of the sensor, the structure of the considered scene, etc.).
The most critical component of this noise is related to those
pixels that spatially correspond after coregistration but belong
to different objects at the two dates (i.e., the border region of
objects or high-frequency area in the images). Those pixels af-
fect in a negative way the multitemporal information extraction
processes. They reduce the effectiveness of change detection
between multitemporal images, leading to false alarms [28].
They impact on the accuracy of data fusion and multitemporal
segmentation [29]. RN properties are analyzed in [30] in the
feature space of change vector analysis (CVA) in the polar
domain. RN information has been employed together with a
segmentation technique to improve change detection in VHR
images in [31].

In this paper, we propose to exploit RN properties for re-
ducing the residual local misalignment affecting multitemporal
images after applying state-of-the-art coregistration methods.
By reducing local misalignment, the method aims at increasing
the accuracy of coregistration and thus of multitemporal infor-
mation extraction methods. To this end, residual misregistration
information is directly employed in the design of an approach
for fine coregistration of VHR multitemporal images. After
standard coregistration, RN extraction is conducted in the CVA
polar domain [30] and pixels that are locally dominated by
RN (i.e., those that still have to be aligned) are used as CPs.

The matching is conducted at a local level after estimating the
amount of displacement. A deformation map is generated by
interpolation using matched CP pairs. Finally, the slave image
is warped to the coordinates of the master image throughout
a deformation map. The experiments carried out on simulated
and real multitemporal VHR images confirm the effectiveness
of the proposed approach.

The remainder of this paper is structured as follows. We
recall the concepts and properties of RN derived in the CVA
in the polar domain in Section II. Section III illustrates the
proposed automatic fine coregistration technique based on the
local analysis of RN pixels. Section IV describes simulated and
real data sets made up of VHR optical images and presents
the design of experiments. Section V shows the experimental
results obtained on the data sets. Finally, conclusion and future
work are given in Section VI.

II. BACKGROUND ON RN ESTIMATION

In [30], RN pixels (i.e., pixels affected by residual mis-
alignment) have been identified through CVA in the polar
domain. In this domain, RN pixels can be identified by solving
two independent 1-D problems (i.e., one along the magnitude
variable and one along the direction one) by applying linear
decision boundaries. In the following, we briefly recall the main
concepts of CVA and RN detection in the polar domain. These
concepts are fundamental for the proposed technique.

Let us consider two VHR multispectral images X1 and X2

acquired over the same geographical area at different times at t1
and t2, respectively. Let us assume that they have been already
coregistered according to any state-of-the-art coregistration
method and that the images do not show significant radiometric
differences to successfully apply CVA (the reader is referred to
[32] for further details on the advantages of having radiometri-
cally corrected images). The multispectral difference image is
computed based on the CVA technique by subtracting the spec-
tral feature vectors associated with each corresponding pixel in
the two considered images. The multispectral difference image
XΔ is made up of spectral change vectors (SCVs) defined as

XΔ = X2 −X1. (1)

Under the assumption of working into a 2-D feature space, the
change information contained in the SCVs can be described by
the magnitude ρ and the direction ϑ of change vectors, i.e.,

ρ =
√
(XΔ,1)2 + (XΔ,2)2, ρ ∈ [0, ρmax] (2)

ϑ = tan−1

(
XΔ,1

XΔ,2

)
, ϑ ∈ [0, 2π) (3)

where XΔ,b represents the bth component (spectral band) of
XΔ(b = {1, 2}), and ρmax is the highest magnitude value of
SCVs in the considered images. The change information for
a generic pixel in spatial position (x, y) can be represented in
the magnitude-direction domain by its components ρ(x, y) and
ϑ(x, y).

In [32], it has been shown that, in the polar representation,
unchanged SCVs have a low magnitude and cluster around
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Fig. 1. Representation of the changed and unchanged decision regions in the
CVA polar domain.

the origin, whereas changed SCVs have a high magnitude and
cluster far from the origin. Along the magnitude variable SCVs
XΔ(x, y) can be labeled as changed or unchanged according to
the following rule:

XΔ(x, y) ∈
{

change, if ρ(x, y) ≥ T

no change, otherwise
(4)

where T is a threshold value that can be set according to any
of the methods proposed in the literature [33]–[35]. T divides
the polar domain into a circle of unchanged samples centered
at its origin and with a radius equal to the threshold T (dark
gray area in Fig. 1), and an annulus of changed samples having
inner radius equal to T (light gray area in Fig. 1). As changed
SCVs show preferred directions according to the kind of change
occurred on the ground, different kinds of changes can be
isolated within the annulus along the direction variable.

The concepts above have been used in [30] to analyze the
effects and properties of RN. On one hand, RN affects un-
changed pixels by increasing the spread of the cluster in the
circle of unchanged pixels with respect to the case of perfectly
aligned images. On the other hand, dominant RN shows in the
annulus of the changed pixels properties similar to those of
changed pixels. The latter is the most critical RN component
from the multitemporal analysis point of view as it is caused
by the comparison of misaligned pixels that belong to different
objects in X1 and X2 and results in critical errors. In [30],
the RN multiscale properties were analyzed. Multiscale analy-
sis was conducted by decomposing the multitemporal images
according to a multiscale transformation (a stationary wavelet
transform (SWT) with a recursively upsampled bicubic filter).
CVA was applied to each pair (Xn

1 , X
n
2 ) of images, where the

superscript n(n = 0, 1, . . . , N) indicates the resolution level
(note that X0

1 ≡ X1). The analysis of the distribution of the
direction of SCVs at different resolution levels showed that
the clusters of dominant RN in the annulus of changed pixels
exhibit unstable statistical properties versus the scale of the im-
ages. Their impact on the statistical distribution of the direction
variable decreases when the scale decreases. On the contrary,
real changes tend to be stable with the scale. According to this

observation, it is possible to identify dominant RN by compar-
ing the probability density function of pixels in the annulus
of changed samples at different resolutions. The conditional
density of RN distribution p̂RN(ϑ|ρ ≥ T ) has thus been derived
as [30], [36]

p̂RN(ϑ|ρ ≥ T ) = C
[
P 0(ρ ≥ T )p̂0(ϑ|ρ ≥ T )

− PN(ρ ≥ T )p̂N(ϑ|ρ ≥ T )
]

(5)

where P 0(ρ ≥ T ) and PN (ρ ≥ T ) are the probabilities of
SCVs having values in the magnitude domain higher than T
at resolution level 0 (original image) and at lower level N ,
respectively; p̂0(ϑ|ρ ≥ T ) and p̂N (ϑ|ρ ≥ T ) are the marginal
conditional densities of the direction variable of the same
SCVs at full and N th resolution, respectively; and C is a
constant defined such that

∫ 2π

0 p̂RN(ϑ|ρ ≥ T )dϑ = 1. In (5),
the marginal conditional density is estimated according to the
Parzen window technique with a Gaussian kernel as [37]. It is
worth noting that a high value of p̂RN(ϑ|ρ ≥ T ) corresponds
to a high probability that the pixel is contaminated by RN
(i.e., high difference among distributions at different resolution
levels).

III. PROPOSED APPROACH TO FINE

IMAGE COREGISTRATION

In this section, we propose a fine coregistration technique
based on the RN estimated in the CVA polar domain. The
proposed method is designed for correcting residual misalign-
ment that affects multitemporal image pairs after the state-
of-the-art coregistration techniques have been applied. Most
of the research on coregistration between VHR multitempo-
ral images has focused on increasing the overall registration
accuracy. Such approaches consider residual misregistration
between images as an inevitable error. Here, instead, we focus
on residual misregistration as a source of information. The
aim is to take advantage of RN to increase the registration
accuracy. Under the assumption of multitemporal images being
already coregistered by state-of-the-art methods, the proposed
technique is applied according to three steps: 1) CP extraction
based on RN distribution; 2) CP matching according to a local
displacement analysis; and 3) generation of the deformation
map and image warping. Fig. 2 represents the block scheme
of the proposed coregistration procedure. In the following, a
detailed description of each step is given.

A. CPs Extraction Based on RN Distribution

RN describes the effects of the residual misregistration be-
tween VHR multitemporal images (see Section II and [30] for
further details) after coregistration has been applied. Residual
local misalignments depend on the stability of the acquisition
platform, the off-nadir angle of the sensor, the structure of
the considered scene, seasonal change, and so on. They act as
an obstacle when the multitemporal images are employed into
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Fig. 2. Block scheme of the proposed coregistration procedure.

diverse applications. However, the coregistration result can be
improved if the regions affected by misalignment are identified
and geometrically corrected. This can be done by analyzing
the distribution of RN estimated along the direction variable
in CVA. Once RN pixels are extracted, they are employed as
CPs to reduce the misalignment effects in the multitemporal
images. The proposed strategy, carrying out the registration
process by directly focusing on the critical pixels affected by
misalignment, is able to improve the coregistration accuracy
with respect to standard methods.

The conditional density of RN is estimated according to
(5). The distribution p̂RN(ϑ|ρ ≥ T ) includes contributions from
both dominant and nondominant RN. However, only dominant
RN contributions are considered for CP extraction as they are
the most critical from the multitemporal analysis point of view
[30], [31]. The dominant RN pixels are those having high values
of p̂RN(ϑ|ρ ≥ T ). They can be separated from the nondominant
RN pixels by thresholding the RN density. To this end, a
threshold TRN is applied to the conditional density of RN. All
the SCVs falling in direction intervals where p̂RN(ϑ|ρ ≥ T ) is
higher than TRN are labeled as CPs and employed for correcting
the locally misaligned regions.

In a general feature-based matching process for VHR im-
ages, CPs are extracted on each image and matched themselves
by directly using intensity values of their neighboring pixels or
by generating description vectors to estimate similarity. On the
contrary, here, CPs are extracted by taking advantage of multi-
temporal correlation: They are the pixels showing misalignment
between images. In other words, they are not extracted on each
image independently. There is no estimation on the position of
CPs on each image. Therefore, it is not possible to detect CPs
correspondence, but we can estimate the amount of displace-
ment between the two images that characterizes each CP. To this
end, we consider different possible displacements between the
two images. Let Ω = {Ω1, . . . ,ΩD} be the set of considered
D displacements. Let us assume that each displacement Ωd

only models rigid translations in x and y direction, i.e., Ωd =
{Δxd,Δyd, d = 1, . . . , D} and that displacements are small
(i.e., Δxd,Δyd are less than few pixels). These assumptions are
both reasonable since images have been initially coregistered.
Thus, large differences in scale and rotation between images
have been already corrected, and residual small-scale and ro-
tation differences can be locally approximated as rigid trans-
lations [38]. Such rigid translations are expected to be small
as state-of-the-art coregistration methods provide in general
good performance. Once Ω has been defined, we create a set
of possible displacements of the master image X1 by taking
the slave image X2 and translating it according to the set of
misalignment values Ω. Let XD

2 = {Xd
2 , d = 1, . . . , D} be the

set of slave images after translation by the D displacements
in Ω. For each pair made up of the master image X1 and the
slave image Xd

2 (X
d
2 ∈ XD

2 ), we derive the conditional density
p̂RN
d (ϑd|ρd ≥ T ) and generate the RN map Md. When the dis-

placement is d, the RN map Md(d = 1, . . . , D) is defined as

Md(x, y) =

{
1, if p̂RN

d (ϑd(x, y)|ρd(x, y) ≥ T ) ≥ TRN

0, otherwise
(6)

where ρd(x, y) and ϑd(x, y) are the magnitude and direction
values of SCVs at coordinates (x, y) in a given scene, under the
condition that the displacement is d.

B. CP Matching According to a Local Displacement Analysis

In order to match the CPs, we perform a local analysis of the
RN maps Md associated to the D displacements in Ω. Let us
divide each RN map into L subimages of size p× q. For each
split l(l = 1, . . . , L), we estimate amount of misregistration
AMl

d as the number of misaligned pixels resulting for a given
displacement d as

AMl
d =

∑
1≤x≤q
1≤y≤p

M l
d(x, y) (7)

where M l
d(x, y) indicates whether the pixel with coordinates

(x, y) in the lth split of the dth RN map has been labeled as
misregistered according to (6).

The variable computed in (7) can be used to estimate the rel-
ative position between corresponding CPs (i.e., pixels showing
misalignment in the original master–salve pair images X1, X2).
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Fig. 3. CP generation from RN pixels by local analysis.

If there is a split for which few CPs are extracted compared
with other partitions, this split is less misaligned and thus more
precisely coregistered. This concept can be applied to estimate
the amount of displacement in a generic local region. Thus, the
displacement Ωd ∈ Ω associated to the minimum number of
misaligned pixels AMl

d is selected as the displacement for all
the CPs in the lth split. The local displacement Ωl associated
with the lth split is computed as

Ωl = arg min
Ωd∈Ω

{
AMl

d

}
. (8)

It is important to remark that, despite AMl
d is estimated by

considering all the pixels with nonzero values in M l
d in the

lth split, the final displacement value is associated to CPs only.
The displacement value is explicitly derived for each split that
contains CPs (i.e., RN pixels) in the original master–slave pair
of images X1, X2. Let C = {cm1 , cm2 }, m = 1, . . . ,M , be the
set of CP pairs, and let (xm

1,l, y
m
1,l) be the spatial position of the

mth generic CP cm1 in the master image extracted in the lth split.
The spatial position (xm

2,l, y
m
2,l) of the corresponding CP cm2 in

the slave image is defined as

{
xm
2,l = xm

1,l −Δxl

ym2,l = ym1,l −Δyl
, ∀ l = 1, . . . , L, ∀m = 1, . . . ,M (9)

where Ωl = {Δxl,Δyl} is the independently estimated local
displacements in x-direction and y-direction in the lth split, and
M is the total number of CPs (i.e., M = ΣL

l=1 ml, where ml is
the number of CPs in the lth split). All the CPs belonging to
the same split are associated to the same displacement. Accord-
ingly, the size of the split assumes a relevant role. A small size
results in higher registration accuracy since it guarantees a more
precise estimation of local residual displacement. However, this
increases the time for completing the registration process. On
the other hand, a large split reduces the computational burden
at the cost of more rough estimation of the displacement.
Fig. 3 shows the concept for the generation of matched CPs
from the RN map with a local analysis of the displacement.

C. Generation of the Deformation Map and Image Warping

Depending on the kind of deformation to be corrected,
a different transformation model should be employed. In the
case of standard coregistration in VHR multitemporal images,
analytical models (which are physical models related to the
sensors or parametric models estimated by taking CP pairs) are
usually applied [29]. However, they are not suitable for a fine
registration that mitigates the local residual distortion. In this
case, fine sampling of the deformation is necessary. Thus, we
generate a deformation map DM using CP pairs. The deforma-
tion map is represented by a displacement vector associated to
every pixel of the master image [29]. The CP pairs extracted by
the proposed technique are irregularly scattered in the image.
Thus, interpolation is used to estimate the deformation in an ap-
propriate way for the irregular CPs. We apply a natural neighbor
interpolation to generate a deformation grid DG, which is a 2-D
vector of regularly sampled displacements in the x-direction
and y-direction [39]. The natural neighbor method determines
the value of a regular point through a weighted average of the
values of the neighboring CPs. These neighbors are determined
by Voronoi regions generated from the original point set [39].
From the interpolation method, we generate the deformation
grid with regular sampling. The grid has the same size as the
split dimension. Finally, cubic spline interpolation method is
applied to the deformation grid to generate the deformation
map. The last step consists in the warping of the slave image to
the master one according to the obtained deformation map DM .
Bilinear interpolation is employed for estimating pixel values at
each position. The warped slave image XR

2 is generated as

XR
2 = DM (DG(X2)) . (10)

IV. DATA SET DESCRIPTION AND

DESIGN OF EXPERIMENTS

A. Data Set Description

In order to evaluate the effectiveness of the proposed fine
coregistration method and its usefulness in the data set acquired
by different sensors, we used multitemporal images acquired
over the city of Trento (Italy) from the QuickBird and WorldView
satellite multispectral sensors. The QuickBird images have a
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Fig. 4. Data sets acquired over the city of Trento, Italy. QuickBird data set: (a) Master image (July 2006). (b) Slave image (October 2005). WorldView data set:
(c) Master image (August 2010). (d) Slave image (May 2011). All the images are shown in a true-color composition (i.e., 3, 2, and 1 bands are assigned to RGB
channels in the QuickBird data set, and 5, 3, and 2 bands are assigned to RGB channels in the WorldView data set).

panchromatic band with 0.6-m spatial resolution and four mul-
tispectral bands [blue (450–520 nm), green (520–600 nm), red
(630–690 nm), and NIR (760–900 nm)] with 2.4-m spatial
resolution. The WorldView images have a panchromatic band
with a spatial resolution of 0.5 m and eight multispectral bands.
Compared with QuickBird, there are four additional spectral
bands: coastal (400–450 nm), yellow (585–625 nm), red edge
(705–745 nm), and NIR 2 (860–1040 nm) bands with 2.0 m
spatial resolution. From these images, we generated one sim-
ulated and two real data sets. The proposed method was first
applied to the simulated data to investigate its properties and
effectiveness in a controlled environment. Then, it was applied
to the real multitemporal data to demonstrate its practical
application performance.

The master image (X1) of the simulated data set is the Quick-
Bird image acquired in July 2006 with 14.1◦ off-nadir angle.
It is made up of 1000× 1000 pixels [see Fig. 4(a)]. The slave
image (X2) is constructed from the master one by including a
deliberate distortion in order to evaluate the effectiveness of the
proposed coregistration method. Different deformations both in
vertical and horizontal directions with a sinusoidal transform
were applied to model the nonlinear distortions. Coregistration
results obtained for deformations within displacements from
0 to 5 pixels in both horizontal and vertical directions were
similar. Here, we report the result obtained with a distortion
of sinusoidal deformation in the negative horizontal direction

with 5-pixel amplitude and 100-pixel period, and in positive
vertical direction with 3-pixel amplitude and 150-pixel period,
respectively. The distorted slave image is resampled to the same
size of the master one by a bilinear interpolation.

The first real data set has as a master image, i.e., the 2006
QuickBird scene (X1). The slave image (X2) is the QuickBird
image collected in October 2005 with 9.8◦ off-nadir angle [see
Fig. 4(b)]. The size of the slave image is 1200× 1200 pixels, so
that it fully covers the area of the master image. The second real
data set is made up of two WorldView multispectral images ac-
quired over the same area of the QuickBird images. The master
image (X1) was acquired in August 2010 with 19.3◦ off-nadir
angle and has a size of 1200× 1200 pixels [see Fig. 4(c)]. The
slave image (X2) was taken in May 2011 with 12.9◦ off-nadir
angle and has a size of 1400× 1400 pixels in order to cover
the master image [see Fig. 4(d)]. The test site includes various
objects such as small buildings and roads, and land covers such
as agricultural fields, bare soil, etc. A visual analysis pointed
out that the upper part of the scene is relatively homogeneous
since it mainly shows agricultural fields. A smaller number of
RN pixels and thus CPs are expected here. The bottom part of
the scene shows high complexity and heterogeneity since it is
associated to an urban area. Here, a larger amount of RN pixels
and thus of CPs is expected.

Before applying the proposed fine coregistration approach,
multitemporal images were pansharpened by the widely used
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Gram–Schmidt method [40] and were radiometrically cor-
rected. The use of radiometrically corrected images improves
the accuracy of the CVA and RN detection. Indeed, it reduces
the impact of false alarms. Thus, detected CPs show a higher
reliability. Any standard radiometric correction technique can
be applied. However, for the sake of simplicity and following
[32], here, we subtract the mean value of each spectral band.
Then, the multitemporal images were coregistered by a state-
of-the-art technique. The latter operation is not applied to the
simulated data set since the amount of deformation already
small. In the real data set, coregistration is applied by two SIFT-
based matching methods [13], [41]. Detailed explanation of the
SIFT methods and how they are used in our experiments is
presented in the following.

B. Reference Coregistration Technique: SIFT

The SIFT method is a widely used matching algorithm
that extracts CP pairs for estimating a transformation model in
order to fulfill coregistration [13]. It consists of three steps, i.e.,
feature extraction, feature description, and feature matching.
In the feature extraction step, the Laplacian with difference-
of-Gaussian filters is approximated in order to extract the
features. Let X(x, y) be an image, then the Laplacian image
with Gaussian filter L(x, y, σ) is defined as

L(x, y, σ) = G(x, y, σ) ∗X(x, y) (11)

where ∗ denotes the convolution operation in x and y, and
G(x, y, σ) is a Gaussian filter. Then, local extrema of difference
images made by the difference-of-Gaussian (DOG) function are
extracted as candidate features. The DOG function D(x, y, σ)
with the image X(x, y) is defined as

D(x, y, σ) = (G(x, y, kσ) −G(x, y, σ)) ∗X(x, y)

= L(x, y, kσ)− L(x, y, σ) (12)

where k denotes a constant multiplicative factor with two
nearby scales in the scale space constructed by the DOG
function. A precise model is fitted to determine the features
exact position and scale. The main orientation of each fea-
ture is identified based on its local image properties, and the
features are then described based on a region of pixels in its
neighborhood that are rotated to each orientation to achieve
a rotation-invariant descriptor with a 128-element vector. The
feature-matching step adopts a minimum Euclidean distance
for the descriptor vector for each feature of the master image to
find the nearest neighbor in the slave image to its corresponding
feature. To establish correct matching, the ratio of the distances
to the closest and second closest neighbors should be less than
a predefined threshold. More detailed explanation of the SIFT
method is introduced in [13].

One of the problems when the SIFT method is applied to
VHR images is that all CPs in a corresponding image are
candidates for the extraction of matching point regardless of
their relative position. To mitigate this effect, we carried out the
alignment of the images in the real data sets by the SIFT method
with restricted search space for the matching of CPs (we call

this process “modified SIFT method” from now on) [41]. To
apply the modified SIFT-based alignment, the threshold of the
minimum Euclidean distance between the description vectors
is set to 0.7, and the ratio of the closest and second closest
distances is set to 0.7, referring to [13]. By considering the
geometric accuracy of the VHR data, the radius of the circular
buffer is set by multiplying the scale of each feature of the
master image by 50 pixels (around 25–30 m). A projective
transformation is used to align the images [42], [43], which is
well known to be appropriate for the geometric correction of
VHR images. Outliers, which are extracted from geometrically
different position between images, are removed by applying
the random sample consensus (RANSAC), which is one of the
representative estimation methods of the transformation model
[44]. The slave image is then aligned to the coordinates of
the master image by the estimated projective transformation.
After applying both standard and modified SIFT coregistration,
the root mean square errors (RMSEs) of real data sets were
less than 1 pixel, except for the case in which the standard
SIFT method was applied to the QuickBird data set. In this
case, a reasonable warped image could not be generated due
to the large number of false-matched points detected by the
standard SIFT method. In detail, the RMSE of the QuickBird
data set after the modified SIFT method was 0.83 pixels, and
the RMSEs of WorldView data set were 0.82 and 0.65 pixels
after applying the standard and the modified SIFT methods,
respectively.

C. Performance Evaluation Indexes

The master and slave images of the simulated data set
are derived from the same QuickBird acquisition. Thus, if all
spatial distortions introduced in the slave image are corrected
by the coregistration approach, the two images become the
same. Therefore, the coregistration accuracy can be evaluated
by estimating the correlation coefficient (CC) and the normal-
ized mutual information (NMI), which are representative of the
similarity between the two inputs. The CC value of images X1

and X2 is calculated as

CC(X1, X2) =
σX1X2√
σX1

σX2

(13)

where σX1X2
denotes covariance between the two images, and

σX1
and σX2

are the standard deviations of the two images,
respectively. The CC can range from −1 to 1, with 1 indicating
perfect correlation (i.e., the two inputs are exactly the same
images).

The NMI index measures the statistical correlation of images.
The NMI value is defined as follows:

NMI(X1, X2) =
H(X1) +H(X2)

H(X1, X2)
. (14)

Here, H(X1) and H(X2) are the entropy of images X1 and
X2, respectively, and H(X1, X2) is the joint entropy of the
two images. Larger values correspond to a greater similarity
between two images.
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TABLE I
RELIABLE RANGES OF PARAMETERS USED IN THE PROPOSED APPROACH

The real data sets consist of multitemporal images acquired
at different times and under different conditions so that they
have different radiometric properties. Therefore, the similarity-
based indexes cannot be employed for evaluating the coregis-
tration results. For the numerical assessment of performance on
the real data sets, the RMSE and its standard deviation (STD)
are estimated over checkpoints extracted by experienced photo
interpreters. Let (Δxc

i ,Δyci ) be the residual difference on a
checkpoint pair, then the RMSE and its STD are calculated as

RMSE =
1

M

M∑
i=1

√
(Δxc

i )
2 + (Δyci )

2 (15)

STD =

√√√√√∑M
i=1

(√
(Δxc

i )
2 + (Δyci )

2 − RMSE

)2

M − 1
(16)

where M is the total number of checkpoints.

V. EXPERIMENTAL RESULTS

In order to assess the effectiveness of the proposed method,
we applied it to the preprocessed simulated and real data sets.
To this end, some parameters need to be fixed. The proposed
approach demonstrated to be robust within a reasonable range
of variations of such parameters. Table I provides suggestions
resulting from a wide range of experiments conducted on the
available data. In the succeeding section, an analysis of the
impact of the split size on the fine registration performance is
provided. The rest of the parameters are fixed as follows. RN
has been identified according to [30] by selecting two spectral
bands. After some experiments, the red and NIR bands demon-
strated to be the most effective ones for the considered data
set (however, any other pair can be selected without any loss
of general validity). Multiscale decomposition was conducted
by Daubechies-4 SWT [45], but also in this case, any other
methods can be applied. Three levels (N = 3) were computed.
The decision threshold T on SCVs magnitude was automat-
ically selected by applying Bayesian thresholding [46]. Note
that, when very large images are considered, more sophisticated
approaches such as the split-based one [47] can be used. TRN

was set to 10−4. To estimate the local displacement for each
CP, a set of displacement values Ωd was defined by translating
the slave image in the x-direction and y-direction from −5 to
+5 pixels with 0.5-pixel interval using a bilinear interpolation.
The range of displacements to be investigated is fixed accord-
ing to the maximum expected residual misalignment after the
application of state-of-the-art coregistration techniques.

Fig. 5. Estimated conditional density of RN for the simulated data set.

Fig. 6. NMI values versus the split dimension (simulated data set).

A. Results: Simulated Data Set

Fig. 5 shows the conditional density of RN derived according
to (5) for the simulated data set. The pixels having p̂RN(ϑ|ρ ≥
T ) larger than the threshold TRN were extracted as candidate
CPs. RN maps Md were derived for each displacement d. Each
Md was divided into splits of size p× q. Then, the amount
of extracted CPs at each split l, i.e., AMl

d, versus the amount
of displacement was computed. To observe the performance
versus the split dimension, we considered different regular sizes
(i.e., p = q) of splits and calculated the NMI values between
the two images after coregistration. Fig. 6 shows the NMI
values versus the split size ranging between 20× 20 and 200×
200 pixels. As one can see, the NMI values are relatively stable
when varying the split size. However, as expected, smaller sizes
of split guarantee slightly better results than larger ones.

Based on these results, we fixed the optimal split size to 50×
50 pixels. Fig. 7(a) shows the extracted CPs as yellow cross on
the master image. As expected, CPs are mainly extracted from
areas that contain boundaries (in the considered scene, they are
mainly associated to buildings and roads in the urban area).
Few CPs were extracted from more homogeneous areas (in this
case, mainly the agricultural fields). From the extracted CPs,
we generated the deformation grids in the x-direction and y-
direction by applying the natural neighbor interpolation with
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Fig. 7. Comparison of deformation maps in the simulated data set. (a) Extracted CPs from the proposed method and generated deformation map from these
CPs in (b) x-direction and (c) y-directions. Deformation maps generated from standard SIFT method in (d) x-direction and in (e) y-direction. Deformation maps
generated from the modified SIFT method in (f) x-direction and in (g) y-direction. Reference deformation maps in (h) x-direction and in (i) y-direction.

the same sampling interval of the split dimension. The defor-
mation map was generated by applying the spline interpolation
to the grids [see Fig. 7(b) and (c)]. For comparison, deformation
maps were generated using CPs extracted by both the standard
[see Fig. 7(d) and (e)] and modified [see Fig. 7(f) and (g)]
SIFT methods. The proposed approach estimated a defor-
mation map very similar to the reference deformation map
[see Fig. 7(h) and (i)], i.e., the one applied to simulate the
multitemporal data set. On the contrary, the maps generated
from SIFT-based methods were not able to model the sinusoidal
distortions. It is worth noting that the proposed method effec-
tively generated the deformation map through the whole scene
regardless of the distribution of extracted CPs.

Finally, the simulated image was warped to the coordinates
of the master image by using the deformation map obtained by
bilinear interpolation. For the visual assessment of the coreg-
istration result, we generated a chessboard image in which the
block of the master and warped images are repeatedly interlaced
[see Fig. 8(b)]. The chessboard image of the simulated data

set (before coregistration) is also shown for visual comparison
[see Fig. 8(a)]. For the visual relief with the chessboard image,
the blocks of the master image appear in true color, whereas the
blocks of the slave image appear in false color (NIR, red, and
green bands were assigned to the red, green, and blue channels,
respectively). From the boundary between neighboring blocks,
we can analyze the quality of the registration result achieved by
the proposed approach. As one can see from the circled regions
in Fig. 8(b), the chessboard image generated from the proposed
method precisely aligned the line and shape information along
the boundary of the blocks, whereas the result of the original
images was not well aligned [see Fig. 8(a)].

Table II shows CC and NMI values. The standard and mod-
ified SIFT methods were not able to increase the CC and NMI
values compared with the case of original simulated data set
(no registration), whereas the proposed method could consider-
ably increase these values. In terms of CC value, the proposed
approach corrected almost all distortion within the simulated
image because the CC value is close to one (0.9955). The
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Fig. 8. Chessboard images generated (a) before applying the proposed technique and (b) after applying the proposed technique (simulated data set).

TABLE II
CC AND NMI QUALITY INDEXES FOR THE SIMULATED DATA SET

NMI value achieved by the proposed approach is 0.7907, which
improved of around 0.2 points compared with the standard
methods. From the visual and quantitative evaluation, it is worth
noting that the two VHR images are precisely coregistered
by the proposed coregistration technique, although the data
geometrically have local distortions (i.e., caused by sinusoid
displacements in the simulated data set).

B. Results: Real Data Set

To further validate the proposed technique, experiments
were carried out on the two pairs of real multitemporal VHR
images described in Section IV. After preprocessing, the pro-
posed method was applied with the same parameters used for
the simulated data set. The split size was set to 50× 50 pixels .
For the comparison, we generated magnified chessboard images
of the QuickBird images obtained by the proposed method
when the split sizes were set to 50× 50 , 100× 100, and 150×
150 pixels, respectively (see Fig. 9). As expected, boundaries
of blocks in the chessboard image generated with 50× 50 pixel
size aligned better than those with other sizes (see, e.g., the
circled region in Fig. 9). The chessboard images of the entire
scene generated from the master and coregistered slave images
of both data sets are shown in Fig. 10. As one can see along
the boundaries between blocks, the master and warped slave
images resulted precisely coregistered.

For the numerical assessment, the RMSE and its STD on 20
check points manually extracted from the master and warped
images after the registration process have been computed. A
comparison is also performed with the coregistration results
achieved by the projective transformation estimated using CPs

extracted from the standard and modified SIFT methods. The
quantitative results are reported in Table III. All the coregistra-
tion methods improved the whole registration accuracy, except
for the case where the standard SIFT approach was applied to
the QuickBird data set. This is because a too large number of
false-match points was detected to warp the image.

An analysis of the numerical results points out the effective-
ness of the proposed automatic fine coregistration technique,
which allows one to accurately coregister the images, obtaining
better accuracy than those reached by both SIFT methods. In
greater detail, for the QuickBird data set, the proposed fine
coregistration sharply reduced the RMSE from 2.7 to 1.2 pixels
and the STD value from 1.5 to 0.6 pixels when the modified
SIFT approach was used for coregistration. For the WorldView
data set, the standard SIFT method achieved an RMSE value
around 3 pixels and a STD value of 1.8. The fine coregistration
reduced of about three times both values, i.e., the RMSE re-
sulted to be equal only to 1.1 pixels and the STD value became
0.5. Moreover, when the modified SIFT coregistered method
was used, the proposed fine coregistration approach decreased
the RMSE of about 2 pixels, from 2.9 to less than 1 pixel, and
the STD value of about 5 times, from 2 to 0.4. It is worth noting
that the proposed method can achieve a more uniform accuracy
on the image due to the local analysis carried out according to
the CPs extracted by using the property of the RN pixels. This is
confirmed by the STD values of the RMSE, which are on both
data sets, smaller for the proposed method than for the SIFT-
based ones.

VI. DISCUSSION AND CONCLUSION

In this paper, we proposed a novel approach to fine coreg-
istration between VHR multitemporal images that aims at
mitigating the residual misalignments (also referred to as RN)
affecting multitemporal images after applying state-of-the-art
coregistration methods. RN is estimated according to a CVA-
based approach and RN pixels are used as CPs. CP pairs for
the warping of the slave image on the master one are derived
by a local analysis of RN pixels. The deformation map for
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Fig. 9. Comparison of magnified chessboard image from QuickBird real data set according to split size: (a) 50× 50, (b) 100× 100, and (c) 150× 150 pixels.

Fig. 10. Chessboard image of real data set generated from the proposed registration technique. (a) QuickBird and (b) WorldView data sets.

TABLE III
REGISTRATION RESULTS OBTAINED ON THE REAL DATA SETS

coregistration is generated by the CP pairs. The experimental
results obtained both on simulated and real multitemporal VHR
data sets confirmed that the proposed method can effectively
improve the results achieved by state-of-the-art methods such
as the SIFT-based ones.

A simulated data set showing nonlinear small geometric dis-
tortions was employed to confirm the capability to mitigate the
distortions of the proposed approach. In such a condition, the
proposed method showed significant improvement in the coreg-
istration accuracy (i.e., the estimated deformation map was very
similar to the one applied for generating the simulated data
set and both CC and NMI values increased). On the contrary,
the reference state-of-the-art methods could not mitigate the

local and nonlinear distortions. This is demonstrated by the CC
and NMI values that did not improve. The proposed method is
expected to improve the coregistration accuracy of any state-of-
the-art method (even those employing nonrigid transformations
as piecewise linear functions, thin plate spline, or weighted
mean transformation). This is because it conducts a local
analysis on the output of the state-of-the-art coregistration tech-
niques. Similar considerations hold for real data sets as well.

The use of the proposed fine coregistration approach implies
a few additional minutes as it is applied after the use of state-of-
the art coregistration methods. However, the additional compu-
tational time is compensated by the sharply higher alignment
between images. This is a significant improvement since a
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better alignment reduces the errors in the multitemporal image
analysis applications.

The proposed method requires fixing a certain number of
parameters. However, the method has low sensitivity to the
parameter values within a reasonable range. Among the others,
the most critical parameter to fix is related to the definition of
the split size for the local analysis and displacement estimation.
In this paper, we considered only fixed-shaped square splits.
Despite that the optimal size can be selected, regular splits
include heterogeneous objects. Thus, they may not completely
capture the structure of each single object in the scene and the
specific impact of local distortions on them. In order to mitigate
this issue, future activity will focus on the use of adaptive
local neighboring systems being able to capture the nature of
each analyzed scene. This can reduce the error on the local
displacement estimation and thus on the final coregistration.
Another future work is to extend the proposed method to the
coregistration of multisensor VHR image pairs.
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